Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi
IIIT:

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q
- polynomial space
- sub-linear query time

The NLS Problem

- Given: a set of N lines L in \mathbb{R}^{d}
- Goal: build a data structure s.t.
- given a query q, find the closest line ℓ^{*} to q
- polynomial space
- sub-linear query time

Approximation

- Finds an approximate closest line ℓ
$\operatorname{dist}(q, \ell) \leq \operatorname{dist}\left(q, \ell^{*}\right)(1+\epsilon)$

Nearest Neighbor Problems
Motivation
Previous Work
Our result
Notation

BACKGROUND

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

- Applications: database, information retrieval, pattern recognition, computer vision
- Features: dimensions
- Objects: points

- Similarity: distance between points

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^{*} to q.

- Applications: database, information retrieval, pattern recognition, computer vision
- Features: dimensions
- Objects: points
\bullet

- Similarity: distance between points
- Current solutions suffer from "curse of dimensionality":
- Either space or query time is exponential in d
- Little improvement over linear search

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,

$$
\operatorname{dist}(q, p) \leq \operatorname{dist}\left(q, p^{*}\right)(1+\epsilon)
$$

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e.,

$$
\operatorname{dist}(q, p) \leq \operatorname{dist}\left(q, p^{*}\right)(1+\epsilon)
$$

- There exist data structures with different tradeoffs. Example:
- Space: (dN) $)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Query time: $\left(\frac{d \log N}{\epsilon}\right)^{O(1)}$

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database
- Example:
- Varying light gain parameter of images
- Each image/point becomes a line
- Search for the closest line to the query image

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
- Query time is fast : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
- Query time is fast: $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{o(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any $t>0$
- Query time: $O\left(d^{3} N^{0.5+t}\right)$
- Space: $d^{2} N^{o\left(\frac{1}{\epsilon^{2}}+\frac{1}{t^{2}}\right)}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
- Query time is fast: $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any $t>0$
- Query time: $O\left(d^{3} N^{0.5+t}\right)$
- Space: $d^{2} N^{o\left(\frac{1}{\epsilon^{2}}+\frac{1}{t^{2}}\right)}$
- Very recently [MNSS] extended it for k-flats
- Query time $O\left(n^{\frac{k}{k+1-\rho}+t}\right)$
- Space: $O\left(n^{1+\frac{\sigma k}{k+1-\rho}}+n \log ^{O\left(\frac{1}{t}\right)} n\right)$

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{o(1)}$

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points

Our Result

We give a randomized algorithm that for any sufficiently small ϵ reports a $(1+\epsilon)$-approximate solution with high probability

- Space: $(N+d)^{o\left(\frac{1}{\epsilon^{2}}\right)}$
- Time : $\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on d
- The first algorithm with poly log query time and polynomial space for objects other than points
- Only uses reductions to ANN

Notation

- L : the set of lines with size N
- q : the query point

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines

Notation

- L : the set of lines with size N
- q : the query point
- $B(c, r)$: ball of radius r around c
- dist: the Euclidean distance between objects
- angle: defined between lines
- δ-close: two lines ℓ, ℓ^{\prime} are δ-close if

$$
\sin \left(\operatorname{angle}\left(\ell, \ell^{\prime}\right)\right) \leq \delta
$$

Net Module
Unbounded Module
Parallel Module

MODULES

Net Module

- Intuition: sampling points from each line finely enough to get a set of points P, and building an $A N N(P, \epsilon)$ should suffice to find the approximate closest line.

Net Module

- Intuition: sampling points from each line finely enough to get a set of points P, and building an $\operatorname{ANN}(P, \epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line, Then
- Either the returned line ℓ_{p} is an approximate closest line
$-\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq x / \epsilon$

Net Module

- Intuition: sampling points from each line finely enough to get a set of points P, and building an $A N N(P, \epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line, Then
- Either the returned line ℓ_{p} is an approximate closest line
$-\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq x / \epsilon$
Issue:
It should be used inside a bounded
 region

Unbounded Module - Intuition

- All lines in L pass through the origin o

Unbounded Module - Intuition

- All lines in L pass through the origin o
- Data structure:
- Project all lines onto any sphere $S(o, r)$ to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$

Unbounded Module - Intuition

- All lines in L pass through the origin o
- Data structure:
- Project all lines onto any sphere $S(o, r)$ to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$
- Query Algorithm:
- Project the query on $S(o, r)$ to get q^{\prime}
- Find the approximate closest point to q^{\prime}, i.e., $p=A N N_{P}\left(q^{\prime}\right)$

- Return the corresponding line of p

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\epsilon \delta}$, the returned line ℓ_{p} is

- Either an approximate closest line
- Or is δ-close to the closest line ℓ^{*}

Unbounded Module

- All lines in L pass through a small ball $B(o, r)$
- Query is far enough, outside of $B(o, R)$
- Use the same data structure and query algorithm

Lemma: if $R \geq \frac{r}{\epsilon \delta}$, the returned line ℓ_{p} is

- Either an approximate closest line
- Or is δ-close to the closest line ℓ^{*}

This helps us in two ways

- Bound the region for the net module
- Restrict search to almost parallel lines

Parallel Module - Intuition

- All lines in L are parallel

Parallel Module - Intuition

- All lines in L are parallel
- Data structure:
- Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$

Parallel Module - Intuition

- All lines in L are parallel
- Data structure:
- Project all lines onto any hyper-plane g which is perpendicular to all the lines to get point set P
- Build ANN data structure $\operatorname{ANN}(P, \epsilon)$
- Query algorithm:
- Project the query on g to get q^{\prime}
- Find the approximate closest point to q^{\prime}, i.e., $p=A N N_{P}\left(q^{\prime}\right)$
- Return the corresponding line to p

Parallel Module

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

Parallel Module

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\operatorname{dist}(q, g) \leq \frac{D \epsilon}{\delta}$, then

- Either the returned line ℓ_{p} is an approximate closest line
- $\operatorname{Or} \operatorname{dist}\left(q, \ell_{p}\right) \leq D$

Parallel Module

- All lines in L are δ-close to a base line ℓ_{b}
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_{b}
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $\operatorname{dist}(q, g) \leq \frac{D \epsilon}{\delta}$, then

- Either the returned line ℓ_{p} is an approximate closest line
- $\operatorname{Ordist}\left(q, \ell_{p}\right) \leq D$

Thus, for a set of almost parallel lines, we can use a set of parallel modules to cover a bounded region.

How the Modules Work Together

Given a set of lines, we come up with a polynomial number of balls.

How the Modules Work Together

Given a set of lines, we come up with a polynomial number of balls.

- If q is inside the ball
- Use net module

How the Modules Work Together

Given a set of lines, we come up with a polynomial number of balls.

- If q is inside the ball
- Use net module
- If q is outside the ball
- First use unbounded module to find a line ℓ

How the Modules Work Together

Given a set of lines, we come up with a polynomial number of balls.

- If q is inside the ball
- Use net module
- If q is outside the ball
- First use unbounded module to find a line ℓ

How the Modules Work Together

Given a set of lines, we come up with a polynomial number of balls.

- If q is inside the ball
- Use net module
- If q is outside the ball
- First use unbounded module to find a line ℓ
- Then use parallel module to search among parallel lines to ℓ

Outline of the Algorithms

- Input: a set of n lines S

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}
] step

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}
] step

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}
$]$ step

Why?

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
- Use ℓ_{p} to find a much closer line $\ell_{p}{ }^{\prime}$ Improvement
- Update ℓ_{p} with ℓ_{p}^{\prime}

Let $s_{1}, \ldots, s_{\log n}$ be the $\log n$ closest lines to q in the set S

Outline of the Algorithms

- Input: a set of n lines S
- Randomly choose a subset of $n / 2$ lines T
- Solve the problem over T to get a line ℓ_{p}
- For $\log n$ iterations
$\left.\begin{array}{l}\text { - Use } \ell_{p} \text { to find a much closer line } \ell_{p}^{\prime} \\ \text { - Update } \ell_{p} \text { with } \ell_{p}^{\prime}\end{array}\right] \begin{gathered}\text { Improvement } \\ \text { step }\end{gathered}$
Let $s_{1}, \ldots, s_{\log n}$ be the $\log n$ closest lines to q in the set S With high probability at least one of $\left\{s_{1}, \ldots, s_{\log n}\right\}$ is sampled in T
$-\operatorname{dist}\left(q, \ell_{p}\right) \leq \operatorname{dist}\left(q, s_{\log n}\right)(1+\epsilon)$
- $\log n$ improvement steps suffices to find an approximate closest line

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

Use the three modules here

Conclusion

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Poly-logarithmic query time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$

Conclusion

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Poly-logarithmic query time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$

Future Work

- The current result is not efficient in practice
- Large exponents
- Algorithm is complicated

conclusion

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Poly-logarithmic query time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$

Future Work

- The current result is not efficient in practice
- Large exponents
- Algorithm is complicated
- Can we get a simpler algorithms?

Conclusion

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Poly-logarithmic query time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$

Future Work

- The current result is not efficient in practice
- Large exponents
- Algorithm is complicated
- Can we get a simpler algorithms?
- Generalization to higher dimensional flats

Conclusion

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O\left(\frac{1}{\epsilon^{2}}\right)}$
- Poly-logarithmic query time $:\left(d+\log N+\frac{1}{\epsilon}\right)^{O(1)}$

Future Work

- The current result is not efficient in practice
- Large exponents
- Algorithm is complicated
- Can we get a simpler algorithm?
- Generalization to higher dimensional flats
- Generalization to other objects, e.g. balls

THANK YOU!

