Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi

Massachusetts Institute of Technology

• Given: a set of N lines L in \mathbb{R}^d

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q
 - polynomial space
 - sub-linear query time

- Given: a set of N lines L in \mathbb{R}^d
- Goal: build a data structure s.t.
 - given a query q , find the closest line ℓ^* to q
 - polynomial space
 - sub-linear query time

Approximation

• Finds an approximate closest line ℓ $dist(q, \ell) \leq dist(q, \ell^*)(1 + \epsilon)$

Nearest Neighbor Problems Motivation Previous Work Our result Notation

BACKGROUND

Nearest Neighbor Problem

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

Nearest Neighbor Problem

q

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points

Nearest Neighbor Problem

q

NN: Given a set of N points P, build a data structure s.t. given a query point q, finds the closest point p^* to q.

- Applications: database, information retrieval, pattern recognition, computer vision
 - Features: dimensions
 - Objects: points
 - Similarity: distance between points
- Current solutions suffer from "curse of dimensionality":
 - Either space or query time is exponential in d
 - Little improvement over linear search

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e., $dist(q,p) \leq dist(q,p^*)(1 + \epsilon)$

Approximate Nearest Neighbor(ANN)

- ANN: Given a set of N points P, build a data structure s.t. given a query point q, finds an approximate closest point p to q, i.e., $dist(q,p) \leq dist(q,p^*)(1 + \epsilon)$
- There exist data structures with different tradeoffs. Example:

- Space:
$$(dN)^{O(\frac{1}{\epsilon^2})}$$

- Query time: $\left(\frac{d \log N}{\epsilon}\right)^{O(1)}$

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database

Motivation for NLS

One of the simplest generalizations of ANN: data items are represented by k-flats (affine subspace) instead of points

- Model data under linear variations
- Unknown or unimportant parameters in database
- Example:
 - Varying light gain parameter of images
 - Each image/point becomes a line
 - Search for the closest line to the query image

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

- [AIKN] for 1-flat: for any t > 0
 - Query time: $O(d^3N^{0.5+t})$
 - Space: $d^2 N^{O\left(\frac{1}{\epsilon^2} + \frac{1}{t^2}\right)}$

Previous and Related Work

- Magen[02]: Nearest Subspace Search for constant k
 - Query time is fast : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
 - Space is super-polynomial : $2^{(\log N)^{O(1)}}$

Dual Problem: Database is a set of points, query is a k-flat

145

- [AIKN] for 1-flat: for any t > 0
 - Query time: $O(d^3N^{0.5+t})$
 - Space: $d^2 N^{O\left(\frac{1}{\epsilon^2} + \frac{1}{t^2}\right)}$
- Very recently [MNSS] extended it for *k*-flats

- Query time
$$O\left(n^{\frac{k}{k+1-\rho}+t}\right)$$

- Space:
$$O(n^{1+\frac{\delta\kappa}{k+1-\rho}} + n\log^{O(\frac{1}{t})}n)$$

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*
- The first algorithm with poly log query time and polynomial space for objects other than points

- Space: $(N+d)^{O\left(\frac{1}{\epsilon^2}\right)}$
- Time: $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$
- Matches up to polynomials, the performance of best algorithm for ANN. No exponential dependence on *d*
- The first algorithm with poly log query time and polynomial space for objects other than points
- Only uses reductions to ANN

- *L* : the set of lines with size *N*
- q : the query point

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects

- L : the set of lines with size N
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects
- *angle*: defined between lines

- *L* : the set of lines with size *N*
- q : the query point
- B(c,r): ball of radius r around c
- *dist*: the Euclidean distance between objects
- *angle*: defined between lines
- δ -close: two lines ℓ , ℓ' are δ -close if

 $\sin(angle(\ell,\ell')) \leq \delta$

Net Module Unbounded Module Parallel Module

MODULES

Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P, \epsilon)$ should suffice to find the approximate closest line.

Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P,\epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line, Then
 - Either the returned line ℓ_p is an approximate closest line
 - Or $dist(q, \ell_p) \leq x/\epsilon$

Net Module

• Intuition: sampling points from each line finely enough to get a set of points P, and building an $ANN(P,\epsilon)$ should suffice to find the approximate closest line.

Lemma:

- Let x be the separation parameter: distance between two adjacent samples on a line, Then
 - Either the returned line ℓ_p is an approximate closest line
 - Or $dist(q, \ell_p) \leq x/\epsilon$

Issue:

It should be used inside a bounded region

Unbounded Module - Intuition

• All lines in *L* pass through the origin *o*

Unbounded Module - Intuition

- All lines in *L* pass through the origin *o*
- Data structure:
 - Project all lines onto any sphere S(o,r) to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$

Unbounded Module - Intuition

- All lines in *L* pass through the origin *o*
- Data structure:
 - Project all lines onto any sphere S(o,r) to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$
- Query Algorithm:
 - Project the query on S(o, r) to get q'
 - Find the approximate closest point to q', i.e., $p = ANN_P(q')$
 - Return the corresponding line of \boldsymbol{p}

Unbounded Module

- All lines in L pass through a small ball B(o,r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Unbounded Module

- All lines in L pass through a small ball B(o,r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Lemma: if $R \ge \frac{r}{\epsilon \delta}$, the returned line ℓ_p is

- Either an approximate closest line
- Or is δ -close to the closest line ℓ^*

Unbounded Module

- All lines in L pass through a small ball B(o,r)
- Query is far enough, outside of B(o, R)
- Use the same data structure and query algorithm

Lemma: if $R \ge \frac{r}{\epsilon \delta}$, the returned line ℓ_p is

- Either an approximate closest line
- Or is δ -close to the closest line ℓ^*

This helps us in two ways

- Bound the region for the net module
- Restrict search to almost parallel lines

Parallel Module - Intuition

• All lines in *L* are parallel

Parallel Module - Intuition

- All lines in *L* are parallel
- Data structure:
 - Project all lines onto any hyper-plane
 g which is perpendicular to all the
 lines to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$

Parallel Module - Intuition

- All lines in *L* are parallel
- Data structure:
 - Project all lines onto any hyper-plane
 g which is perpendicular to all the
 lines to get point set P
 - Build ANN data structure $ANN(P, \epsilon)$
- Query algorithm:
 - Project the query on g to get q'
 - Find the approximate closest point to q', i.e., $p = ANN_P(q')$
 - Return the corresponding line to \boldsymbol{p}

Parallel Module

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Parallel Module

g

ℓb

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $dist(q,g) \leq \frac{D\epsilon}{\delta}$, then

- Either the returned line ℓ_p is an approximate closest line
- Or $dist(q, \ell_p) \le D$

Parallel Module

g

- All lines in L are δ -close to a base line ℓ_b
- Project the lines onto a hyper-plane g which is perpendicular to ℓ_b
- Query is close enough to g
- Use the same data structure and query algorithm

Lemma: if $dist(q,g) \leq \frac{D\epsilon}{\delta}$, then

- Either the returned line ℓ_p is an approximate closest line
- Or $dist(q, \ell_p) \leq D$

Thus, for a set of almost parallel lines, we can use a set of parallel modules to cover a bounded region.

- If q is inside the ball
 - Use net module

- If q is inside the ball
 - Use net module
- If q is outside the ball
 - First use unbounded module to find a line ℓ

- If q is inside the ball
 - Use net module
- If q is outside the ball
 - First use unbounded module to find a line ℓ

- If q is inside the ball
 - Use net module
- If q is outside the ball
 - First use unbounded module to find a line ℓ
 - Then use parallel module to search among parallel lines to ℓ

• Input: a set of *n* lines *S*

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T

- Input: a set of n lines S
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

Why?

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations
 - Use ℓ_p to find a much closer line ℓ_p' Improvement
 - Update ℓ_p with ℓ_p'

Let $s_1, \ldots, s_{\log n}$ be the $\log n$ closest lines to q in the set S

lр

- Input: a set of *n* lines *S*
- Randomly choose a subset of n/2 lines T
- Solve the problem over T to get a line ℓ_p
- For log *n* iterations

- Use ℓ_p to find a much closer line ℓ_p' Improvement

– Update ℓ_p with ℓ_p'

Let $s_1, \ldots, s_{\log n}$ be the $\log n$ closest lines to q in the set SWith high probability at least one of $\{s_1, \ldots, s_{\log n}\}$ is sampled in T

- $dist(q, \ell_p) \le dist(q, s_{\log n})(1 + \epsilon)$
- $\log n$ improvement steps suffices to find an approximate closest line

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

Improvement Step

Given a line ℓ, how to improve it, i.e., find a closer line?

- Data structure
- Query Processing Algorithm

Use the three modules here

Bounds we get for NLS problem

– Polynomial Space: $O(N+d)^{O(\frac{1}{\epsilon^2})}$

- Poly-logarithmic query time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

Bounds we get for NLS problem

- Polynomial Space: $O(N+d)^{O(\frac{1}{\epsilon^2})}$
- Poly-logarithmic query time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- The current result is not efficient in practice
 - Large exponents
 - Algorithm is complicated

Bounds we get for NLS problem

- Polynomial Space: $O(N + d)^{O(\frac{1}{\epsilon^2})}$
- Poly-logarithmic query time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- The current result is not efficient in practice
 - Large exponents
 - Algorithm is complicated
- Can we get a simpler algorithms?

Bounds we get for NLS problem

- Polynomial Space: $O(N + d)^{O(\frac{1}{\epsilon^2})}$
- Poly-logarithmic query time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- The current result is not efficient in practice
 - Large exponents
 - Algorithm is complicated
- Can we get a simpler algorithms?
- Generalization to higher dimensional flats

Bounds we get for NLS problem

- Polynomial Space: $O(N + d)^{O(\frac{1}{\epsilon^2})}$
- Poly-logarithmic query time : $\left(d + \log N + \frac{1}{\epsilon}\right)^{O(1)}$

- The current result is not efficient in practice
 - Large exponents
 - Algorithm is complicated
- Can we get a simpler algorithm?
- Generalization to higher dimensional flats
- Generalization to other objects, e.g. balls

THANK YOU!