
Approximate Nearest Line Search
in High Dimensions

Sepideh Mahabadi

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑
• Goal: build a data structure s.t.

– given a query 𝑞, find the closest line
ℓ∗ to 𝑞

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑
• Goal: build a data structure s.t.

– given a query 𝑞, find the closest line
ℓ∗ to 𝑞

– polynomial space
– sub-linear query time

The NLS Problem

• Given: a set of 𝑁 lines 𝐿 in ℝ𝑑
• Goal: build a data structure s.t.

– given a query 𝑞, find the closest line
ℓ∗ to 𝑞

– polynomial space
– sub-linear query time

Approximation
• Finds an approximate closest line ℓ
𝑑𝑑𝑑𝑑 𝑞,ℓ ≤ 𝑑𝑑𝑑𝑑(𝑞, ℓ∗)(1 + 𝜖)

BACKGROUND

Nearest Neighbor Problems
Motivation
Previous Work
Our result
Notation

Nearest Neighbor Problem
NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

Nearest Neighbor Problem
NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

• Applications: database, information retrieval,

pattern recognition, computer vision
– Features: dimensions
– Objects: points
– Similarity: distance between points

Nearest Neighbor Problem
NN: Given a set of 𝑁 points 𝑃, build a data structure
s.t. given a query point 𝑞, finds the closest point 𝑝∗
to 𝑞.

• Applications: database, information retrieval,

pattern recognition, computer vision
– Features: dimensions
– Objects: points
– Similarity: distance between points

• Current solutions suffer from “curse of
dimensionality”:
– Either space or query time is exponential in 𝑑
– Little improvement over linear search

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of 𝑁 points 𝑃, build a data
structure s.t. given a query point 𝑞, finds an
approximate closest point 𝑝 to 𝑞, i.e.,

𝑑𝑑𝑑𝑑 𝑞,𝑝 ≤ 𝑑𝑑𝑑𝑑 𝑞, 𝑝∗ 1 + 𝜖

Approximate Nearest Neighbor(ANN)

• ANN: Given a set of 𝑁 points 𝑃, build a data
structure s.t. given a query point 𝑞, finds an
approximate closest point 𝑝 to 𝑞, i.e.,

𝑑𝑑𝑑𝑑 𝑞,𝑝 ≤ 𝑑𝑑𝑑𝑑 𝑞, 𝑝∗ 1 + 𝜖

• There exist data structures with different

tradeoffs. Example:
– Space: 𝑑𝑁 𝑂 1

𝜖2

– Query time: 𝑑 log 𝑁
𝜖

𝑂 1

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points
• Model data under linear variations
• Unknown or unimportant parameters in

database

Motivation for NLS

One of the simplest generalizations of
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points
• Model data under linear variations
• Unknown or unimportant parameters in

database
• Example:

– Varying light gain parameter of images
– Each image/point becomes a line
– Search for the closest line to the query image

Previous and Related Work
• Magen[02]: Nearest Subspace Search for constant 𝑘

– Query time is fast : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Previous and Related Work
• Magen[02]: Nearest Subspace Search for constant 𝑘

– Query time is fast : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Dual Problem: Database is a set of points, query is a 𝑘-flat
• [AIKN] for 1-flat: for any 𝑑 > 0

– Query time: 𝑂 𝑑3𝑁0.5+𝑡

– Space: 𝑑2𝑁𝑂 1
𝜖2+

1
𝑡2

Previous and Related Work
• Magen[02]: Nearest Subspace Search for constant 𝑘

– Query time is fast : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

– Space is super-polynomial : 2 log 𝑁 𝑂 1

Dual Problem: Database is a set of points, query is a 𝑘-flat
• [AIKN] for 1-flat: for any 𝑑 > 0

– Query time: 𝑂 𝑑3𝑁0.5+𝑡

– Space: 𝑑2𝑁𝑂 1
𝜖2+

1
𝑡2

• Very recently [MNSS] extended it for 𝑘-flats

– Query time 𝑂 𝑛
𝑘

𝑘+1−𝜌+𝑡

– Space: 𝑂(𝑛1+
𝜎𝑘

𝑘+1−𝜌 + 𝑛 log𝑂
1
𝑡 𝑛)

Our Result
We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑 𝑂 1
𝜖2

• Time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Our Result
We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑 𝑂 1
𝜖2

• Time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

Our Result
We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑 𝑂 1
𝜖2

• Time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

• The first algorithm with poly log query time and
polynomial space for objects other than points

Our Result
We give a randomized algorithm that for any sufficiently
small 𝜖 reports a 1 + 𝜖 -approximate solution with high
probability

• Space: 𝑁 + 𝑑 𝑂 1
𝜖2

• Time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

• Matches up to polynomials, the performance of best
algorithm for ANN. No exponential dependence on 𝑑

• The first algorithm with poly log query time and
polynomial space for objects other than points

• Only uses reductions to ANN

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑑𝑑𝑑: the Euclidean distance

between objects

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑑𝑑𝑑: the Euclidean distance

between objects
• 𝑎𝑛𝑎𝑎𝑎: defined between lines

Notation

• 𝐿 : the set of lines with size 𝑁
• q : the query point
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐
• 𝑑𝑑𝑑𝑑: the Euclidean distance

between objects
• 𝑎𝑛𝑎𝑎𝑎: defined between lines
• 𝛿-close: two lines ℓ , ℓ′ are 𝛿-close

if
sin(𝑎𝑛𝑎𝑎𝑎 ℓ, ℓ′) ≤ 𝛿

MODULES

Net Module
Unbounded Module
Parallel Module

Net Module
• Intuition: sampling points from each line

finely enough to get a set of points 𝑃,
and building an 𝐴𝑁𝑁(𝑃, 𝜖) should
suffice to find the approximate closest
line.

Net Module
• Intuition: sampling points from each line

finely enough to get a set of points 𝑃,
and building an 𝐴𝑁𝑁(𝑃, 𝜖) should
suffice to find the approximate closest
line.

Lemma:
• Let 𝑥 be the separation parameter:

distance between two adjacent samples
on a line, Then
– Either the returned line ℓ𝑝 is an

approximate closest line
– Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝑥/𝜖

Net Module
• Intuition: sampling points from each line

finely enough to get a set of points 𝑃,
and building an 𝐴𝑁𝑁(𝑃, 𝜖) should
suffice to find the approximate closest
line.

Lemma:
• Let 𝑥 be the separation parameter:

distance between two adjacent samples
on a line, Then
– Either the returned line ℓ𝑝 is an

approximate closest line
– Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝑥/𝜖

Issue:
It should be used inside a bounded
region

Unbounded Module - Intuition
• All lines in 𝐿 pass through the origin
𝑜

Unbounded Module - Intuition
• All lines in 𝐿 pass through the origin
𝑜

• Data structure:
– Project all lines onto any sphere
𝑆 𝑜,𝑟 to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

Unbounded Module - Intuition
• All lines in 𝐿 pass through the origin
𝑜

• Data structure:
– Project all lines onto any sphere
𝑆 𝑜,𝑟 to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)
• Query Algorithm:

– Project the query on 𝑆(𝑜, 𝑟) to get 𝑞′
– Find the approximate closest point to
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′

– Return the corresponding line of 𝑝

Unbounded Module
• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜,𝑅)
• Use the same data structure and
 query algorithm

Unbounded Module
• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜,𝑅)
• Use the same data structure and
 query algorithm

Lemma: if 𝑅 ≥ 𝑟

𝜖𝜖
 , the returned line ℓ𝑝 is

• Either an approximate closest line
• Or is 𝛿-close to the closest line ℓ∗

Unbounded Module
• All lines in 𝐿 pass through a small ball
𝐵 𝑜, 𝑟

• Query is far enough, outside of 𝐵(𝑜,𝑅)
• Use the same data structure and
 query algorithm

Lemma: if 𝑅 ≥ 𝑟

𝜖𝜖
 , the returned line ℓ𝑝 is

• Either an approximate closest line
• Or is 𝛿-close to the closest line ℓ∗

This helps us in two ways
• Bound the region for the net module
• Restrict search to almost parallel lines

Parallel Module - Intuition
• All lines in 𝐿 are parallel

Parallel Module - Intuition
• All lines in 𝐿 are parallel
• Data structure:

– Project all lines onto any hyper-plane
𝑎 which is perpendicular to all the
lines to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)

Parallel Module - Intuition
• All lines in 𝐿 are parallel
• Data structure:

– Project all lines onto any hyper-plane
𝑎 which is perpendicular to all the
lines to get point set 𝑃

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖)
• Query algorithm:

– Project the query on 𝑎 to get 𝑞′
– Find the approximate closest point to
𝑞′, i.e., 𝑝 = 𝐴𝑁𝑁𝑃 𝑞′

– Return the corresponding line to 𝑝

Parallel Module
• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑎 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑎
• Use the same data structure and query algorithm

Parallel Module
• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑎 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑎
• Use the same data structure and query algorithm

Lemma: if 𝑑𝑑𝑑𝑑 𝑞,𝑎 ≤ 𝐷𝜖

𝜖
 , then

• Either the returned line ℓ𝑝 is an approximate closest
line

• Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝐷

Parallel Module
• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏
• Project the lines onto a hyper-plane 𝑎 which is

perpendicular to ℓ𝑏
• Query is close enough to 𝑎
• Use the same data structure and query algorithm

Lemma: if 𝑑𝑑𝑑𝑑 𝑞,𝑎 ≤ 𝐷𝜖

𝜖
 , then

• Either the returned line ℓ𝑝 is an approximate closest
line

• Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝐷

Thus, for a set of almost parallel lines, we can use a set
of parallel modules to cover a bounded region.

How the Modules Work Together

Given a set of lines, we come up
with a polynomial number of balls.

How the Modules Work Together

Given a set of lines, we come up
with a polynomial number of balls.
• If 𝑞 is inside the ball

– Use net module
q

How the Modules Work Together

Given a set of lines, we come up
with a polynomial number of balls.
• If 𝑞 is inside the ball

– Use net module

• If 𝑞 is outside the ball
– First use unbounded module to

find a line ℓ

q

How the Modules Work Together

Given a set of lines, we come up
with a polynomial number of balls.
• If 𝑞 is inside the ball

– Use net module

• If 𝑞 is outside the ball
– First use unbounded module to

find a line ℓ

q ℓ

How the Modules Work Together

Given a set of lines, we come up
with a polynomial number of balls.
• If 𝑞 is inside the ball

– Use net module

• If 𝑞 is outside the ball
– First use unbounded module to

find a line ℓ
– Then use parallel module to

search among parallel lines to ℓ

q ℓ

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′
– Update ℓ𝑝 with ℓ𝑝′

Improvement
step

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′
– Update ℓ𝑝 with ℓ𝑝′

Improvement
step

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′
– Update ℓ𝑝 with ℓ𝑝′

Why?

Improvement
step

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′
– Update ℓ𝑝 with ℓ𝑝′

Let 𝑑1 , … , 𝑑log 𝑛 be the log 𝑛 closest lines to 𝑞 in the set 𝑆

Improvement
step

Outline of the Algorithms
• Input: a set of 𝑛 lines 𝑆
• Randomly choose a subset of 𝑛/2 lines 𝑇
• Solve the problem over 𝑇 to get a line ℓ𝑝
• For log𝑛 iterations

– Use ℓ𝑝 to find a much closer line ℓ𝑝′
– Update ℓ𝑝 with ℓ𝑝′

Let 𝑑1 , … , 𝑑log 𝑛 be the log 𝑛 closest lines to 𝑞 in the set 𝑆
With high probability at least one of {𝑑1 , … , 𝑑log 𝑛} is sampled
in 𝑇

– 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝑑𝑑𝑑𝑑 𝑞, 𝑑log 𝑛 (1 + 𝜖)
– log 𝑛 improvement steps suffices to find an approximate closest

line

Improvement
step

Improvement Step

Given a line ℓ, how to improve it, i.e., find a
closer line?

Improvement Step

Given a line ℓ, how to improve it, i.e., find a
closer line?
• Data structure
• Query Processing Algorithm

Improvement Step

Given a line ℓ, how to improve it, i.e., find a
closer line?
• Data structure
• Query Processing Algorithm

Use the three modules here

Conclusion

Bounds we get for NLS problem

– Polynomial Space: 𝑂 𝑁 + 𝑑 𝑂 1
𝜖2

– Poly-logarithmic query time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Conclusion

Bounds we get for NLS problem

– Polynomial Space: 𝑂 𝑁 + 𝑑 𝑂 1
𝜖2

– Poly-logarithmic query time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Future Work
• The current result is not efficient in practice

– Large exponents
– Algorithm is complicated

Conclusion

Bounds we get for NLS problem

– Polynomial Space: 𝑂 𝑁 + 𝑑 𝑂 1
𝜖2

– Poly-logarithmic query time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Future Work
• The current result is not efficient in practice

– Large exponents
– Algorithm is complicated

• Can we get a simpler algorithms?

Conclusion

Bounds we get for NLS problem

– Polynomial Space: 𝑂 𝑁 + 𝑑 𝑂 1
𝜖2

– Poly-logarithmic query time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Future Work
• The current result is not efficient in practice

– Large exponents
– Algorithm is complicated

• Can we get a simpler algorithms?
• Generalization to higher dimensional flats

Conclusion

Bounds we get for NLS problem

– Polynomial Space: 𝑂 𝑁 + 𝑑 𝑂 1
𝜖2

– Poly-logarithmic query time : 𝑑 + log𝑁 + 1
𝜖

𝑂 1

Future Work
• The current result is not efficient in practice

– Large exponents
– Algorithm is complicated

• Can we get a simpler algorithm?
• Generalization to higher dimensional flats
• Generalization to other objects, e.g. balls

THANK YOU!

	Approximate Nearest Line Search in High Dimensions
	The NLS Problem
	The NLS Problem
	The NLS Problem
	The NLS Problem
	Background�
	Nearest Neighbor Problem
	Nearest Neighbor Problem
	Nearest Neighbor Problem
	Approximate Nearest Neighbor(ANN)
	Approximate Nearest Neighbor(ANN)
	Motivation for NLS
	Motivation for NLS
	Motivation for NLS
	Previous and Related Work
	Previous and Related Work
	Previous and Related Work
	Our Result
	Our Result
	Our Result
	Our Result
	Notation
	Notation
	Notation
	Notation
	Notation
	Modules
	Net Module
	Net Module
	Net Module
	Unbounded Module - Intuition
	Unbounded Module - Intuition
	Unbounded Module - Intuition
	Unbounded Module
	Unbounded Module
	Unbounded Module
	Parallel Module - Intuition
	Parallel Module - Intuition
	Parallel Module - Intuition
	Parallel Module
	Parallel Module
	Parallel Module
	How the Modules Work Together
	How the Modules Work Together
	How the Modules Work Together
	How the Modules Work Together
	How the Modules Work Together
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Outline of the Algorithms
	Improvement Step
	Improvement Step
	Improvement Step
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Thank you!�

