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– given a query 𝑞, find the closest line 
ℓ∗ to 𝑞 

– polynomial space 
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Approximation 
• Finds an approximate closest line ℓ 
𝑑𝑑𝑑𝑑 𝑞,ℓ ≤ 𝑑𝑑𝑑𝑑(𝑞, ℓ∗)(1 + 𝜖) 
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s.t. given a query point 𝑞, finds the closest point 𝑝∗ 
to 𝑞. 
 
• Applications: database, information retrieval, 

pattern recognition, computer vision 
– Features: dimensions 
– Objects: points 
– Similarity: distance between points 

• Current solutions suffer from “curse of 
dimensionality”:  
– Either space or query time is exponential in 𝑑 
– Little improvement over linear search 
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Motivation for NLS 

One of the simplest generalizations of 
ANN: data items are represented by 𝑘-
flats (affine subspace) instead of points 
• Model data under linear variations 
• Unknown or unimportant parameters in 

database  
• Example: 

– Varying light gain parameter of images 
– Each image/point becomes a line 
– Search for the closest line to the query image 
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Dual Problem: Database is a set of points, query is a 𝑘-flat 
• [AIKN] for 1-flat: for any 𝑑 > 0 

– Query time: 𝑂 𝑑3𝑁0.5+𝑡  

– Space: 𝑑2𝑁𝑂 1
𝜖2+

1
𝑡2   

• Very recently [MNSS] extended it for 𝑘-flats 

– Query time 𝑂 𝑛
𝑘

𝑘+1−𝜌+𝑡  

– Space: 𝑂(𝑛1+
𝜎𝑘

𝑘+1−𝜌 + 𝑛 log𝑂
1
𝑡 𝑛) 
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𝑂 1
 

• Matches up to polynomials, the performance of best 
algorithm for ANN. No exponential dependence on 𝑑 

• The first algorithm with poly log query time and 
polynomial space for objects other than points 

• Only uses reductions to ANN 
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• 𝐿 : the set of lines with size 𝑁 
• q : the query point 
• 𝐵(𝑐, 𝑟): ball of radius 𝑟 around 𝑐 
• 𝑑𝑑𝑑𝑑: the Euclidean distance 

between objects 
• 𝑎𝑛𝑎𝑎𝑎: defined between lines 
• 𝛿-close: two lines ℓ , ℓ′ are 𝛿-close 

if  
sin(𝑎𝑛𝑎𝑎𝑎 ℓ, ℓ′ ) ≤ 𝛿 
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Net Module 
• Intuition: sampling points from each line 

finely enough to get a set of points 𝑃, 
and building an 𝐴𝑁𝑁(𝑃, 𝜖) should 
suffice to find the approximate closest 
line. 

Lemma:  
• Let 𝑥 be the separation parameter: 

distance between two adjacent samples 
on a line, Then 
– Either the returned line ℓ𝑝 is an 

approximate closest line 
– Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝑥/𝜖 

Issue: 
It should be used inside a bounded 
region 
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𝑆 𝑜,𝑟  to get point set 𝑃 

– Build ANN data structure 𝐴𝑁𝑁(𝑃, 𝜖) 
• Query Algorithm: 

– Project the query on 𝑆(𝑜, 𝑟) to get 𝑞′ 
– Find the approximate closest point to 
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This helps us in two ways 
• Bound the region for the net module 
• Restrict search to almost parallel lines 
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• All lines in 𝐿 are 𝛿-close to a base line ℓ𝑏  
• Project the lines onto a hyper-plane 𝑎 which is 

perpendicular to ℓ𝑏  
• Query is close enough to 𝑎 
• Use the same data structure and query algorithm 
 
Lemma: if 𝑑𝑑𝑑𝑑 𝑞,𝑎 ≤ 𝐷𝜖

𝜖
 , then 

• Either the returned line ℓ𝑝 is an approximate closest 
line 

• Or 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝐷 
 
Thus, for a set of almost parallel lines, we can use a set 
of parallel modules to cover a bounded region. 
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How the Modules Work Together 

Given a set of lines, we come up 
with a polynomial number of balls. 
• If 𝑞 is inside the ball 

– Use net module 

• If 𝑞 is outside the ball 
– First use unbounded module to 

find a line ℓ 
– Then use parallel module to 

search among parallel lines to ℓ 

q ℓ 
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• Input: a set of 𝑛 lines 𝑆 
• Randomly choose a subset of 𝑛/2 lines 𝑇 
• Solve the problem over 𝑇 to get a line ℓ𝑝 
• For log𝑛 iterations 

– Use ℓ𝑝 to find a much closer line ℓ𝑝′ 
– Update ℓ𝑝 with ℓ𝑝′  
 

Let 𝑑1 , … , 𝑑log 𝑛 be the log 𝑛 closest lines to 𝑞 in the set 𝑆 
With high probability at least one of {𝑑1 , … , 𝑑log 𝑛} is sampled 
in 𝑇 

– 𝑑𝑑𝑑𝑑 𝑞, ℓ𝑝 ≤ 𝑑𝑑𝑑𝑑 𝑞, 𝑑log 𝑛 (1 + 𝜖) 
– log 𝑛 improvement steps suffices to find an approximate closest 

line 
 

Improvement 
step 
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Use the three modules here 
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Future Work 
• The current result is not efficient in practice 

– Large exponents 
– Algorithm is complicated 

• Can we get a simpler algorithm? 
• Generalization to higher dimensional flats 
• Generalization to other objects, e.g. balls 



THANK YOU! 
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